296 research outputs found

    Bubbling and Large-Scale Structures in Avalanche Dynamics

    Full text link
    Using a simple lattice model for granular media, we present a scenario of self-organization that we term self-organized structuring where the steady state has several unusual features: (1) large scale space and/or time inhomogeneities and (2) the occurrence of a non-trivial peaked distribution of large events which propagate like ``bubbles'' and have a well-defined frequency of occurrence. We discuss the applicability of such a scenario for other models introduced in the framework of self-organized criticality.Comment: 5 pages RevTex, 4 eps figure

    General scores for accessibility and inequality measures in urban areas

    Get PDF
    In the last decades, the acceleration of urban growth has led to an unprecedented level of urban interactions and interdependence. This situation calls for a significant effort among the scientific community to come up with engaging and meaningful visualizations and accessible scenario simulation engines. The present paper gives a contribution in this direction by providing general methods to evaluate accessibility in cities based on public transportation data. Through the notion of isochrones, the accessibility quantities proposed measure the performance of transport systems at connecting places and people in urban systems. Then we introduce scores rank cities according to their overall accessibility. We highlight significant inequalities in the distribution of these measures across the population, which are found to be strikingly similar across various urban environments. Our results are released through the interactive platform: www.citychrone.org, aimed at providing the community at large with a useful tool for awareness and decision-making

    Measuring complexity with zippers

    Get PDF
    Physics concepts have often been borrowed and independently developed by other fields of science. In this perspective a significant example is that of entropy in Information Theory. The aim of this paper is to provide a short and pedagogical introduction to the use of data compression techniques for the estimate of entropy and other relevant quantities in Information Theory and Algorithmic Information Theory. We consider in particular the LZ77 algorithm as case study and discuss how a zipper can be used for information extraction.Comment: 10 pages, 3 figure

    Dynamically Driven Renormalization Group

    Full text link
    We present a detailed discussion of a novel dynamical renormalization group scheme: the Dynamically Driven Renormalization Group (DDRG). This is a general renormalization method developed for dynamical systems with non-equilibrium critical steady-state. The method is based on a real space renormalization scheme driven by a dynamical steady-state condition which acts as a feedback on the transformation equations. This approach has been applied to open non-linear systems such as self-organized critical phenomena, and it allows the analytical evaluation of scaling dimensions and critical exponents. Equilibrium models at the critical point can also be considered. The explicit application to some models and the corresponding results are discussed.Comment: Revised version, 50 LaTex pages, 6 postscript figure

    Language Trees and Zipping

    Get PDF
    In this letter we present a very general method to extract information from a generic string of characters, e.g. a text, a DNA sequence or a time series. Based on data-compression techniques, its key point is the computation of a suitable measure of the remoteness of two bodies of knowledge. We present the implementation of the method to linguistic motivated problems, featuring highly accurate results for language recognition, authorship attribution and language classification.Comment: 5 pages, RevTeX4, 1 eps figure. In press in Phys. Rev. Lett. (January 2002

    Subjectivity and complexity of facial attractiveness

    Full text link
    The origin and meaning of facial beauty represent a longstanding puzzle. Despite the profuse literature devoted to facial attractiveness, its very nature, its determinants and the nature of inter-person differences remain controversial issues. Here we tackle such questions proposing a novel experimental approach in which human subjects, instead of rating natural faces, are allowed to efficiently explore the face-space and 'sculpt' their favorite variation of a reference facial image. The results reveal that different subjects prefer distinguishable regions of the face-space, highlighting the essential subjectivity of the phenomenon.The different sculpted facial vectors exhibit strong correlations among pairs of facial distances, characterising the underlying universality and complexity of the cognitive processes, and the relative relevance and robustness of the different facial distances.Comment: 15 pages, 5 figures. Supplementary information: 26 pages, 13 figure

    Dynamical correlations in the escape strategy of Influenza A virus

    Full text link
    The evolutionary dynamics of human Influenza A virus presents a challenging theoretical problem. An extremely high mutation rate allows the virus to escape, at each epidemic season, the host immune protection elicited by previous infections. At the same time, at each given epidemic season a single quasi-species, that is a set of closely related strains, is observed. A non-trivial relation between the genetic (i.e., at the sequence level) and the antigenic (i.e., related to the host immune response) distances can shed light into this puzzle. In this paper we introduce a model in which, in accordance with experimental observations, a simple interaction rule based on spatial correlations among point mutations dynamically defines an immunity space in the space of sequences. We investigate the static and dynamic structure of this space and we discuss how it affects the dynamics of the virus-host interaction. Interestingly we observe a staggered time structure in the virus evolution as in the real Influenza evolutionary dynamics.Comment: 14 pages, 5 figures; main paper for the supplementary info in arXiv:1303.595

    Maximum entropy models capture melodic styles

    Full text link
    We introduce a Maximum Entropy model able to capture the statistics of melodies in music. The model can be used to generate new melodies that emulate the style of the musical corpus which was used to train it. Instead of using the n−n-body interactions of (n−1)−(n-1)-order Markov models, traditionally used in automatic music generation, we use a k−k-nearest neighbour model with pairwise interactions only. In that way, we keep the number of parameters low and avoid over-fitting problems typical of Markov models. We show that long-range musical phrases don't need to be explicitly enforced using high-order Markov interactions, but can instead emerge from multiple, competing, pairwise interactions. We validate our Maximum Entropy model by contrasting how much the generated sequences capture the style of the original corpus without plagiarizing it. To this end we use a data-compression approach to discriminate the levels of borrowing and innovation featured by the artificial sequences. The results show that our modelling scheme outperforms both fixed-order and variable-order Markov models. This shows that, despite being based only on pairwise interactions, this Maximum Entropy scheme opens the possibility to generate musically sensible alterations of the original phrases, providing a way to generate innovation

    Phase ordering and symmetries of the Potts model

    Full text link
    We have studied the ordering of the q-colours Potts model in two dimensions on a square lattice. On the basis of our observations we propose that if q is large enough the system is not able to break global and local null magnetisation symmetries at zero temperature: when q<4 the system forms domains with a size proportional to the system size while for q>4 it relaxes towards a non-equilibrium phase with energy larger than the ground state energy, in agreement with the previous findings of De Oliveira et al. (M. J. de Oliveira, A. Petri, T. Tome, Europhys. Lett., 65, 20 (2004)).Comment: 6 pages, 3 figures; minor text rewordings and changes in figures styl
    • …
    corecore